Assignment 1

Philosophical Logic 2025/2026

Instructions

- Discussion among students is allowed, but the assignments should be done and written individually.
- Late submissions will be accepted until one day after the deadline, with a 0.5 penalty.
- Please be explicit and precise, and structure your answers in a way that makes them easy to follow.
- Induction proofs: one or two cases beyond the base step usually suffice.
- Submit a PDF named PL-2025-A1-(your-last-name).
- For any questions or comments, please contact {m.degano, t.j.klochowicz}@uva.nl
- Deadline: Tuesday 4 November 2025, 9 pm.

Conventions. Core notions are as defined in the lecture slides. When asked for a counterexample, provide a specific formula/valuation and verify it by calculation (e.g., a small truth table). Note that when working with Łukasiewicz logics, the constant 1/2 is *not* given in the language.

Exercise 1 [25 points] Paradox outline

Choose or invent a paradox that fascinates you. Be creative in your presentation: you may choose to illustrate your paradox visually, describe it textually, ...

- **a.** List the assumptions/premises and the conclusion that yields the paradox.
- **b.** State the philosophical/logical interest.
- **c.** Either (i) outline a way to dissolve the paradox (what assumption fails; how a reformulation avoids the clash), or (ii) argue briefly why it resists resolution.

(Use no more than 400 words)

Exercise 2 [25 points] Expressivity in Ł₃

Recall that in K_3^s and K_3^w we have $p \to q \equiv \neg p \lor q$, but in \mathbb{L}_3 we do not: $p \to q \not\equiv \neg p \lor q$. In this exercise, we explore the expressivity of \mathbb{L}_3 . In particular, assume the semantics of $\{\neg, \lor, \land, \to\}$ as given in the *Definitions: Many-valued logics - Łukasiewicz* (sec. 1.2.3).

- (i) **Inexpressibility of** \rightarrow **from** $\{\neg, \lor, \land\}$ **.** Prove that \rightarrow is not definable from $\{\neg, \lor, \land\}$ in \pounds_3 . That is, prove that for any formula ϕ whose only sentence letters are p and q and has no other connective besides \neg , \lor and \land , there is a valuation v s.t. $v(\phi) \neq v(p \rightarrow q)$.
- (ii) **Definability of** \vee **and** \wedge **from** $\{\neg, \rightarrow\}$. Show that \vee and \wedge are definable from \neg and \rightarrow in \mathbb{E}_3 . Find formulas ϕ and ψ whose only sentence letters are p and q and have no other connective besides

 \neg , \rightarrow such that $\phi \equiv p \lor q$ and $\psi \equiv p \land q$. Motivate your answer (e.g., give a truth table, or prove the equivalence). You can assume that $p \lor q \equiv \neg(\neg p \land \neg q)$ and $p \land q \equiv \neg(\neg p \lor \neg q)$.

Exercise 3 [50 points] Comparing finite Łukasiewicz logics

For $n \ge 2$, let \mathcal{L}_n be the *n*-valued Łukasiewicz logic with

$$T_n = \left\{ \frac{k}{n-1} : k = 0, 1, \dots, n-1 \right\} \subseteq [0, 1]$$

We work with a language over \neg , \land , \lor , \rightarrow and the usual semantics:

$$\neg p = 1 - p$$

$$p \land q = \min(p, q)$$

$$p \lor q = \max(p, q)$$

$$p \to q = \min(1, 1 - p + q)$$

 $\Gamma \models_n \phi$ iff for every *n*-valuation v: if $v(\gamma) = 1$ for all $\gamma \in \Gamma$, then $v(\phi) = 1$.

We aim to establish, for $k, l \ge 2$,

$$(\forall \phi \ [\models_l \phi \Rightarrow \models_k \phi]) \iff (k-1) \text{ divides } (l-1)$$

a. [20 points] Sanity checks. We first check a few basic cases.

(1)
$$\models_3 \phi \Rightarrow \models_4 \phi$$
 (2) $\models_4 \phi \Rightarrow \models_3 \phi$
(3) $\models_3 \phi \Rightarrow \models_5 \phi$ (4) $\models_5 \phi \Rightarrow \models_3 \phi$

- (1), (2), and (3) are false, while (4) is true. Provide explicit counterexamples (formula + truth table or calculation) for *each false* statement in (1), (2) and (3). You do *not* need to prove (4) here.
- **b.** [15 points] \leftarrow -direction Prove: if (k-1) divides (l-1) then for all formulas ϕ , $\models_l \phi \Rightarrow \models_k \phi$.
- **c.** [15 points] \Rightarrow -direction-part (i). Prove: if l < k, then there exists a formula ϕ such that $\models_l \phi$ but $\not\models_k \phi$.

Hint: use the pigeon-hole principle

d. [Optional, Ungraded, 0 points] Finish the proof and show that if $l \ge k$ and (k-1) does not divide (l-1), there is a formula ϕ with $\models_l \phi$ but $\forall_k \phi$.